Heptagonal face mill with 14 double-sided corners

- · Economical face mill with 14 double-sided corners
- Minimized chattering of workpiece due to maximum lead angle and sharp cutting edge
- Reduced cutting resistance and improved chip emissions by high helix angle application

TECH-NEWS

Heptagonal face mill with 14 double-sided corners

In the various industries including automotive components business, workpieces are manufactured with casting for easy-producing complicated shapes and lowering cost. However, due to the characteristic of casting manufacturing, facing is necessary on each uneven facing surface for assembling. In casting machining, complicated shapes of workpiece and uneven surface creates low clamping force, chattering, unstable tool life, bad surface finish and even shortening life of equipment.

KORLOY launches the double-sided face mill, RM14 to solve those troubles in machining.

RM14 designed with the maximum lead angle, 51° of heptagonal shape reduces cutting load and

chattering comparing to the conventional face mill with lead angle, 45°. Its strong wedge type clamping system ensures stable tool life even in poor cutting conditions.

In addition, there are two types of RM14 insert which are neutral (flat cutting edge) and right-handed (helix cutting edge) and it is possible for both of them to clamp to a single holder. The thicker RM14 insert with sharp cutting edge ensures good performance and stability and its optimal grade realizes long tool life.

RM14 is an economic tool using maximum 14 corners and ensures stable machining and high productivity.

Good performance

- Less cutting load due to high rake and high helix

Improved surface finish

- Less chattering due to lead angle of 51°
- Good chip evacuation

Stable tool life

- High rigidity from thick insert

Stable clamping system

- Wide supporting area and acute angled clamping structure

Application range

Ductile cast iron (500-7/600-3)

Heat resistance stainless steel [1.4849 (DIN)]

[Cutter type]

RM	14	X	C	M	080	I	R	-	27	-	7	-	XN06
Rich Mill	Ap	p proach angle X: special		Arbors type M: Metric A: Inch None: Asia	R: C NR:	Coolant ty Coolant, rig No coolar	/ pe & ht-har nt, righ	hand nded t-hande	d	No. 7:	of te 7 tee	eth th	
No	o. of edges	5	Туре	1	lool Dia.			I	nterna	al			Insert
14	: 14 edges	6 C	C: Cutter	080): Ø80 mm	ſ		27	: Ø27 I	mm		ХN	106: XNMX06

-Insert features

- Wide supporting area of insert ensures stable clamping system.
- High rake angle cutting edge reduces cutting load and increases chip evacuation.
- Thicker insert realizes stability in machining.

Features of insert per types

	Туре	Features	Application range						
Flat		Neutral typeFlat cutting edge	 1st recommended for heat resistant stainless steel machining Generally applied in various machining Applicable for both right handed and left handed 						
Helix		Right handed typeHigh helix cutting edge	 1st recommended for cast iron machining Applicable for stainless steel machining with less than 3 mm depth of cut For high speed and high feed machining 						

Cutter features

- The biggest heptagonal lead angle reduces chatter in machining.
- Wedge type clamping system ensures stable clamping.
- Stepped machining is available without interruption of side wall of insert.

The biggest heptagonal lead angle - Reduced workpiece chattering by reducing axial force

Preventing interruption of side wall

- Prevented interruption of side wall by using the most number of corners in deep facing (heptagonal 14 doublesided corners)

- Increased tool life due to cooling insert

Wedge clamping system

- Stable clamping system with an acute angle structure

[Stable machining]

[RM14]

[Competitor]

- Workpiece Ductile cast iron (500-7)
- Cutting conditions vc (m/min) = 150, fz (mm/t) = 0.25, ap (mm) = 3, ae (mm) = 50, wet
- Tools
- Insert XNMX0606XNR-ML (PC6510) Holder RM14XCM080R-27-6-XN06

Stable machining with RM14 increases chipping resistance

Longer tool life comparing to competitor's tool

-Performance evaluation

[Competitor]

Face mill tool selection guide

Tools	Cutting load	Multi functions	Cost	Maximum depth of cut	No. of corners
RM14 new	****	****	***	***	***
RM8	***	***	****	****	**
RM16	***	**	**	***	****

Recommended cutting conditions

							Cutting conditions								
ISO	Workpiece	ISO (DIN)*	AISI	KS	HB	Grade		Helix		Flat					
		(DIN)					vc (m/min)	fz (mm/t)	ap (mm)	vc (m/min)	fz (mm/t)	ap (mm)			
M	Austenite	X5CrNi18-9 X5CrNiMo17-12-2	304 316	STS304 STS316	160-180	PC9540 (PC5300)	80-160	0.3-0.05	1-3	90-150	0.25-0.05	1-3			
	Heat resistance stainless steel	(1.48□□)*	-	-	160-200	PC9540 (PC5300)	60-100	0.2-0.05	1-2	60-100	0.25-0.05	1-3			
	Gray cast iron	250 (GG 25)*	No 35 B	GC250	180-240	NCM535 (PC6510)	200-300	0.3-0.1	2-3	200-300	0.25-0.1	2-3			
к	Dustile sectives	500-7 (GGG 50)*	80-55-06	GCD500	150-230	PC6510 (PC5300)	110-230	0.3-0.1	2-3	150-200	0.3-0.1	2-3			
	Ductile cast from	600-3 (GGG 60)*	-	GCD600	170-270	PC6510 (PC5300)	85-200	0.25-0.15	2-3	150-200	0.25-0.15	2-3			

Recommended grade and cutting edge

(•: 1st recommendation)

			Re	cutting edge by workpiece									
	T		r	VI		K							
	туре	Austenit	ic stainless steel	Heat resist	ance stainless steel	Gra	y cast iron	Ductile cast iron					
		Туре	Grade	Туре	Grade	Туре	Grade	Туре	Grade				
Flat		-	● PC9540 ○ PC5300 ○ PC5400	•	● PC9540 ○ PC5300 ○ PC5400	-	 ○ PC6510 ○ PC5300 ● NCM535 	-	● PC6510 ○ PC5300 ○ NCM535				
Helix	0	•	● PC9540 ○ PC5300 ○ PC5400	-	● PC9540 ○ PC5300 ○ PC5400	•	 ○ PC6510 ○ PC5300 ● NCM535 	•	● PC6510 ○ PC5300 ○ NCM535				

Grade features

Universal grade PC5300

- PVD coating layer with high hardness and oxidation resistance during machining at high temperature → Superior oxidation resistance during machining of steel, cast iron, stainless steel, and heat-resistant alloys
- Ultra fine grain substrate with high toughness and special treatment on the surface
- → Improved welding resistance and chipping resistance

Coating layer with high surface finish Superior welding resistance

- Coating layer with high hardness and oxidation resistance during machining at high temperature
- Superb wear resistance during machining at high speeds
- Coating layer with high toughness and high adhesive strength
- Excellent chipping resistance
 - Ultra fine grain substrate with high toughness Great fracture resistance and stability in machining

[Coating layer with oxidation resistance during machining at high temperature (after 900°c heat treatment)]

No oxidized layer

[Competitor]

Oxidized between layers

Universal grade PC5400

- Coating layer with excellent lubrication → Improved wear resistance and surface roughness at low speed machining or machining of deposited materials and mild steel
- Ultra fine and high toughness substrate and high toughness coating layer → Stable machinability due to increased chipping resistance and fracture resistance

Increased lubrication coating layer

- Good welding resistance and high machinability in carbon steel and mild steel machining
- Coating layer with high toughness and high adhesive strength
- Superior chipping resistance
- Ultra fine grain substrate with high toughness
- Fracture resistance and high stability at machining

[Surface of the layer rubbed with C45 ball]

The substrate is not exposed due to any welding and splintering.

[Competitor]

The substrate is exposed easily due to welding and splintering.

Milling grade for stainless steel machining PC9540 new

- Optimally designed PVD grade in medium to roughing of stainless steel milling and high interrupted machining
- Longer tool life due to increased fracture resistance from high toughness substrate controls spreading of cracks
- · Good machinability in hard-to-cut material machining due to applying new PVD oxide film with oxidation resistance and heat resistance
- Stable machining preventing welding and chipping from special coating layer treatment technology

- Improved surface finish Good welding resistance
- **PVD** multilayer
- → Controlling crack growth
- PVD oxide film
- → Good oxidation and heat resistance PVD nitride film
- Good wear resistance
- High toughness substrate
- Good breakage resistance

Grade features

Milling grade for cast iron machining New PC6510 new

- Optimal PVD coating for universal cast iron machining controls fracture due to thermal crack.
- Surface treatment technology controls welding and compression of chip on the insert surface.
- High productivity and stable tool life are ensured.

- TiAIN coating layer with high wear resistance and toughness increases stability in machining.
- The optimal substrate with wear resistance and fracture resistance in cast iron machining ensures stable tool life.

[Applied surface treatment technology]

[New PC6510]

[PC6510]

Grade selection guide

Wo	orkpiece	Machining types	Grade	Recommended cutting speed (m/min)	ISO		Application range	
	a	Continuous cutting	PC5300	130 (100-160)	M30	PC5300		
М	Stainless	laterr upted outting	PC5400	120 (95-155)	M40		PC5400	
	01001	Interrupted cutting	PC9540	110 (80-140)	M50			PC9540
		Continuous cutting	PC6510	180 (140-230)	K10	PC6510	ew	
К	Cast iron	latorruptod outting	PC5300	145 (110-180)	K20		DC5200	
		interrupted cutting	PC5400	125 (85-160)	K30		F03300	PC5400

Main machining examples guideline

M [Turbo charger turbine housings]

Туре	Finishing	Medium cutting to roughing	Highly iterrupted cutting
ISO	M25 - M30	M40	M40
Recommended grade	PC5300, PC9530	PC9540	PC9540
Workpiece	Heat resistance stainless steel (1.48□□)*	Heat resistance stainless steel (1.48□□)*	Heat resistance stainless steel (1.48□□)*
Machining type	Wet machining with low depth of cut on the rough machined part	Dry machining with high depth of cut on the wide machined part	Unstable machining with high and frequent interruption
Machined part			

K [Cylinder blocks]

ISO	General cutting	Multi-purpose	High interruptions
Recommended grade	New PC6510	New PC6510	PC5300
Workpiece	Gray cast iron, nodular graphite cast iron (ductile cast iron)	Gray cast iron, nodular graphite cast iron (ductile cast iron)	Gray cast iron, nodular graphite cast iron (ductile cast iron)
Machining type	General cutting for wide areas	Multi-purpose cutting for various shapes	Highly interrupted and unstable cutting
Machined part	Top & Bottom face	Front & Rear face	Bosses

(*:DIN)

-Cutting performance

Ductile cast iron (GCD450)

- Workpiece use Bed plate
- Cutting conditions vc (m/min) = 247, fz (mm/t) = 0.22, ap (mm) = 1, wet
- Tools Insert XNMX060608-ML (PC6510) Holder RM14XCM125R-40-10-XN06

▶ 71% longer tool life than conventional tool's

Ductile cast iron (GCD450)

- Workpiece use Bed plate
- Cutting conditions vc (m/min) = 200, fz (mm/t) = 0.16, ap (mm) = 2, wet
- Tools
- (11/11111) = 200, 12 (11111) = 0.10, ap (11111) = 2, wet
- Insert XNMX0606XNR-ML (PC6510) Holder RM14XCM100R-32-10-XN06

▶ 100% longer tool life than conventional tool's

Insert

			Dimensions (mm)								ed		
Inserts	Designation	I	d	t	r	dı	а	NCM535	PC6510	PC9540	PC5300	PC5400	Geometries
Ö	XNMX0606XNR-ML	6.7	14.0	6.5	0.8	4.6	1.0	•	•	•	•	•	
	XNMX060608-ML	6.7	14.0	6.0	0.8	4.6	-			•	•	•	

Fig. 1

1	Ø20	
)	-	
	Fig. 2	

	• RR: -9°																	(mm)
De	signation	Stock	\bigcirc	ØD	ØD1	ØD2	Ød	Ød1	Ød2	Ød3	а	b	Е	F	ар		Available inserts	Fig.
RM14XCM	050R-22-5-XN06		5	50	58.6	42	22	11	18	-	10.4	6.3	21	40	3.5	0.34		1
	050R-22-6-XN06		6	50	58.6	42	22	11	18	-	10.4	6.3	21	40	3.5	0.34		1
	063R-22-6-XN06		6	63	71.6	42	22	11	18	-	10.4	6.3	21	40	3.5	0.51		1
	063R-22-8-XN06		8	63	71.6	42	22	11	18	-	10.4	6.3	21	40	3.5	0.58		1
	080R-27-6-XN06		6	80	88.6	57	27	14	20	35	12.4	7.0	23	50	3.5	0.98		1
	080R-27-8-XN06	•	8	80	88.6	57	27	14	20	35	12.4	7.0	23	50	3.5	1.08		1
	080R-27-10-XN06		10	80	88.6	57	27	14	20	35	12.4	7.0	23	50	3.5	1.07	XNMX06	1
	100R-32-10-XN06		10	100	108.6	67	32	18	26	42	14.4	8.0	25	63	3.5	1.60		1
	100R-32-12-XN06		12	100	108.6	67	32	18	26	42	14.4	8.0	25	63	3.5	1.58		1
	125R-40-12-XN06		12	125	133.6	90	40	22	32	54	16.4	9.0	29	63	3.5	3.43		1
	125R-40-14-XN06	•	14	125	133.6	90	40	22	32	54	16.4	9.0	29	63	3.5	3.40		1
	160NR-40-16-XN06	•	16	160	168.6	110	40	90	-	-	16.4	9.0	32	63	3.5	4.86		2
	160NR-40-18-XN06		18	160	168.6	110	40	90	-	-	16.4	9.0	32	63	3.5	4.84		2

 \times In applying XNMX060608- \Box , Max. ap = 4.8 mm

•: Stock item None: Order made

Available inserts

	0
XNMX-ML	XNMX-MI

	B 4\/	8 4 1
X I/J	I\/I X =	IVII

	Decignotion			Coated		
	Designation	NCM535	PC6510	PC9540	PC5300	PC5400
XNMX	0606XNR-ML	•	٠	٠	•	•
	060608-ML			•	•	•

Available arbors

De	esignation	Ød	Available arbors
RM14XCM	050R		
	063R		
	080R	27	BT
	100R	32	BTFMC32
	125R	40	
	160R	40	

Parts

	Screw	Wrench
Specification	OMM	A
Ø50~Ø160	FTKA0412B	TW15S

www.korloy.com

Holystar B/D, 1350, Nambusunhwan-ro, Geumcheon-gu, Seoul, 08536, Korea Tel : +82-2-522-3181 Fax : +82-2-522-3184, +82-2-3474-4744 Web : www.korloy.com E-mail : sales.khq@korloy.com

(A) KORLOY AMERICA

620 Maple Avenue, Torrance, CA 90503, USA Tel : +1-310-782-3800 Toll Free : +1-888-711-0001 Fax : +1-310-782-3885 E-mail : sales.kai@korloy.com

(A) KORLOY INDIA

Plot No. 415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, India Tel : +91-124-4391790 Fax : +91-124-4050032 E-mail : sales.kip@korloy.com

& KORLOY TURKEY

Orucreis Mah. Vadi Cad. No: 108 Istanbul Ticaret Sarayi Kat 5 No: 318 Giyimkent Sitesi-Esenler/Istanbul, Turkey Tel : +90-212-438-5197 E-mail : sales.ktl@korloy.com

& KORLOY RUSSIA

Krasivy Dom office No. 305, Bld. 5, Novovladykinskiy proezd 8, 127106, Moscow, Russia Tel : +7-495-280-1458 Fax : +7-495-280-1459 E-mail : sales.krc@korloy.com

(A) KORLOY FACTORY QINGDAO

Ground Dongjing Road 56(B) District Free Trade Zone. Qingdao, China Tel : +86-532-86959880 Fax : +86-532-86760651 E-mail : pro.kfq@korloy.com

(CORLOY EUROPE

Gablonzer Str. 25-27, 61440 Oberursel, Germany Tel : +49-6171-277-83-0 Fax : +49-6171-277-83-59 E-mail : sales.keg@korloy.com

(A) KORLOY BRASIL

Av. Aruana 280, conj.12, WLC, Alphaville, Barueri, CEP06460-010, SP, Brasil Tel : +55-11-4193-3810 E-mail : sales.kbl@korloy.com

& KORLOY CHILE

Av. Providencia 1650, Office 1009, 7500027 Providencia-Santiago, Chile Tel : +56-229-295-490 E-mail : sales.kcs@korloy.com

& KORLOY MEXICO

Queretaro, Mexico E-mail : sales.kml@korloy.com

& KORLOY FACTORY INDIA

Plot No. 415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, India Tel : +91-124-4391790 Fax : +91-124-4050032 E-mail : pro.kim@korloy.com

TN83-EM-01 / 20201010